Modelling Dynamic Trust Contracts for Industry 4.0 Systems

Data sharing across supply chains

 Dynamic context: analytics and predictions, legal framework, business process, roles, organisational structure, time, location and privacy.

value treamer: Shopfloor mgmt. system

.....

Actions

-

KarDiA - Karpisele-Diktronkaleshang

A							
* - E = ***	Antonio	hallon .	S mante	Press Press	die R.		(B. Derror
		mage 1	and the	1 (100)	des-1	1.0001	1.144
Y					÷		
1. 2.00	CZ **	F			F		F
	-	1. 1.2.					· Farm
	(8.1						
	-						
	-	F					
	1911						
	· • •						

10 -

ValueStreamer across the entire supply chain

State of the art

- 12 papers around confidentiality in software design and software operation:
 - confidentiality analyses
 - access control
 - security enforcement
 - data sensitivity
- Access rights mgmt, heterogeneous and dynamic environments, design time, enforcement platform, privacy levels data sharing with operators

Trust 4.0 approach

Models of data flows and data manipulation

Models of privacy requirements

Trust runtime analysis

Models of data flows & data manipulation (1/2)

System and processes

Palladio Component Model (PCM)

Models of data flows & data manipulation (2/2)

9

Trust 4.0 approach

Models of data flows and data manipulation

Models of privacy requirements

Trust runtime analysis

Ensembles

- Membership
- Goal

Models of privacy requirements (1/2)

```
class SharingWithServiceman(val machine: Machine) extends Ensemble {
  val servicemen = role(entities.select[Person].filter(_.hasRole{ case Serviceman(machine) =>
        true } ))
  val accomp = role(entities.select[Person].filter(_.hasRole{ case
        Technician(machine.department) => true } ))
  where( servicemen.all(svc => accomp.some(acc => svc.location == acc.location)) )
  allow(servicemen, machine, "errorRates")
}
```

A subcontractor's technician fixing a machine may see its detailed error rates log but only together with a technician of the department responsible for the machine.

Models of privacy requirements (2/2)

class SharingWithSubsidiary(val company: Company) extends Ensemble {
 val machines = role(entities.select[Machine].filter(_.company == company))
 val persons = role(entities.select[Person].filter(
 _.hasRole{ case HeadOfCompany(subsidiary) => subsidiary.parentCompany == company })

allow(persons, machines, "sum(errorRates)", PrivacyLevel.RESTRICTED)

The **brake supplier share its error rates** with the head of a subsidiary company, e.g. for quality improvement, but only after proper **anonymization** to not reveal details of the manufacturing process.

Trust 4.0 approach

Models of data flows and data manipulation

Models of privacy requirements

Trust runtime analysis

- 1. PCM runtime analysis determines system characteristics such as **privacy levels of sent data**
- Trait-based Coalition Formation Framework (TCOOF) evaluates ensembles and derives decisions by means of access permissions

Trust analysis (2/3)

1. PCM

Vendor

- Characteristic: privacy levels of data
- Location: transmission link
- Analysis: data processors of all possible paths of data to location and effects of processing
- Result: average error rates

- 2. Decision Making based on TCOOF
 - 1. Which contracts are relevant?
 - Relatively new in dynamic systems
 - Ensemble -> constraint solving problem (Choco)
 - Constraint (membership, context)
 - 2. Allow/deny data sharing

Conclusion

- Dynamic systems with architectural modelling
- Security and privacy not static
 - not only roles and hierarchy but roles + dynamic context
 - coordination of multiple parties
- Contributions
 - data flows described in system architecture
 - dynamic data sharing based on context
 - runtime analysis platform for data exchange

- **Refine** requirements. Technical report. Two pilots
- Simplify domain specific language
- Offer security and privacy guarantees at design time in dynamic systems
- Scalability and decentralise security and privacy
- Validation in two industrial pilot demonstrators

Contributions

- 1. data flows described in system architecture
- 2. dynamic data sharing based on context
- **3. runtime analysis platform** for data exchange

Reference architecture

